Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet ; 403(10435): 1460-1471, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38554725

RESUMO

BACKGROUND: Afamitresgene autoleucel (afami-cel) showed acceptable safety and promising efficacy in a phase 1 trial (NCT03132922). The aim of this study was to further evaluate the efficacy of afami-cel for the treatment of patients with HLA-A*02 and MAGE-A4-expressing advanced synovial sarcoma or myxoid round cell liposarcoma. METHODS: SPEARHEAD-1 was an open-label, non-randomised, phase 2 trial done across 23 sites in Canada, the USA, and Europe. The trial included three cohorts, of which the main investigational cohort (cohort 1) is reported here. Cohort 1 included patients with HLA-A*02, aged 16-75 years, with metastatic or unresectable synovial sarcoma or myxoid round cell liposarcoma (confirmed by cytogenetics) expressing MAGE-A4, and who had received at least one previous line of anthracycline-containing or ifosfamide-containing chemotherapy. Patients received a single intravenous dose of afami-cel (transduced dose range 1·0 × 109-10·0 × 109 T cells) after lymphodepletion. The primary endpoint was overall response rate in cohort 1, assessed by a masked independent review committee using Response Evaluation Criteria in Solid Tumours (version 1.1) in the modified intention-to-treat population (all patients who received afami-cel). Adverse events, including those of special interest (cytokine release syndrome, prolonged cytopenia, and neurotoxicity), were monitored and are reported for the modified intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04044768; recruitment is closed and follow-up is ongoing for cohorts 1 and 2, and recruitment is open for cohort 3. FINDINGS: Between Dec 17, 2019, and July 27, 2021, 52 patients with cytogenetically confirmed synovial sarcoma (n=44) and myxoid round cell liposarcoma (n=8) were enrolled and received afami-cel in cohort 1. Patients were heavily pre-treated (median three [IQR two to four] previous lines of systemic therapy). Median follow-up time was 32·6 months (IQR 29·4-36·1). Overall response rate was 37% (19 of 52; 95% CI 24-51) overall, 39% (17 of 44; 24-55) for patients with synovial sarcoma, and 25% (two of eight; 3-65) for patients with myxoid round cell liposarcoma. Cytokine release syndrome occurred in 37 (71%) of 52 of patients (one grade 3 event). Cytopenias were the most common grade 3 or worse adverse events (lymphopenia in 50 [96%], neutropenia 44 [85%], leukopenia 42 [81%] of 52 patients). No treatment-related deaths occurred. INTERPRETATION: Afami-cel treatment resulted in durable responses in heavily pre-treated patients with HLA-A*02 and MAGE-A4-expressing synovial sarcoma. This study shows that T-cell receptor therapy can be used to effectively target solid tumours and provides rationale to expand this approach to other solid malignancies. FUNDING: Adaptimmune.


Assuntos
Anemia , Lipossarcoma Mixoide , Sarcoma Sinovial , Trombocitopenia , Adulto , Humanos , Sarcoma Sinovial/tratamento farmacológico , Sarcoma Sinovial/genética , Lipossarcoma Mixoide/etiologia , Síndrome da Liberação de Citocina/etiologia , Ifosfamida , Trombocitopenia/etiologia , Anemia/etiologia , Antígenos HLA-A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Melanoma Res ; 33(4): 332-337, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325860

RESUMO

There is no currently approved adoptive cellular therapy for solid tumors. Pre-clinical and clinical studies have demonstrated that low-dose radiotherapy (LDRT) can enhance intratumoral T cell infiltration and efficacy. This case report describes a 71-year-old female patient with rectal mucosal melanoma that had developed metastases to liver, lung, mediastinum, axillary nodes, and brain. After systemic therapies had failed, she enrolled in the radiation sub-study of our phase-I clinical trial exploring the safety and efficacy of afamitresgene autoleucel (afami-cel), genetically engineered T cells with a T cell receptor (TCR) targeting the MAGE-A4 tumor antigen in patients with advanced malignancies (NCT03132922). Prior to the infusion of afami-cel, she received concurrent lymphodepleting chemotherapy and LDRT at 5.6 Gy/4 fractions to the liver. Time to partial response was 10 weeks, and duration of overall response was 18.4 weeks. Although the patient progressed at 28 weeks, the disease was well controlled after high-dose radiotherapy to liver metastases and checkpoint inhibitors. As of the last follow-up, she remains alive over two years after LDRT and afami-cel therapy. This report suggests that afami-cel in combination with LDRT safely enhanced clinical benefit. This provides evidence for further exploring the benefit of LDRT in TCR-T cell therapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Feminino , Humanos , Idoso , Melanoma/patologia , Antígeno HLA-A2 , Imunoterapia Adotiva , Neoplasias Cutâneas/radioterapia , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos
3.
Nat Med ; 29(1): 104-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624315

RESUMO

Affinity-optimized T cell receptors can enhance the potency of adoptive T cell therapy. Afamitresgene autoleucel (afami-cel) is a human leukocyte antigen-restricted autologous T cell therapy targeting melanoma-associated antigen A4 (MAGE-A4), a cancer/testis antigen expressed at varying levels in multiple solid tumors. We conducted a multicenter, dose-escalation, phase 1 trial in patients with relapsed/refractory metastatic solid tumors expressing MAGE-A4, including synovial sarcoma (SS), ovarian cancer and head and neck cancer ( NCT03132922 ). The primary endpoint was safety, and the secondary efficacy endpoints included overall response rate (ORR) and duration of response. All patients (N = 38, nine tumor types) experienced Grade ≥3 hematologic toxicities; 55% of patients (90% Grade ≤2) experienced cytokine release syndrome. ORR (all partial response) was 24% (9/38), 7/16 (44%) for SS and 2/22 (9%) for all other cancers. Median duration of response was 25.6 weeks (95% confidence interval (CI): 12.286, not reached) and 28.1 weeks (95% CI: 12.286, not reached) overall and for SS, respectively. Exploratory analyses showed that afami-cel infiltrates tumors, has an interferon-γ-driven mechanism of action and triggers adaptive immune responses. In addition, afami-cel has an acceptable benefit-risk profile, with early and durable responses, especially in patients with metastatic SS. Although the small trial size limits conclusions that can be drawn, the results warrant further testing in larger studies.


Assuntos
Antígenos de Neoplasias , Neoplasias de Cabeça e Pescoço , Masculino , Humanos , Proteínas de Neoplasias , Antígenos HLA-A , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos
4.
Front Oncol ; 12: 818679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372008

RESUMO

Background: ADP-A2M10 specific peptide enhanced affinity receptor (SPEAR) T-cells are genetically engineered autologous T-cells that express a high-affinity melanoma-associated antigen (MAGE)-A10-specific T-cell receptor (TCR) targeting MAGE-A10-positive tumors in the context of human leukocyte antigen (HLA)-A*02. ADP-0022-004 is a phase 1, dose-escalation trial to evaluate the safety and anti-tumor activity of ADP-A2M10 in three malignancies (https://clinicaltrials.gov: NCT02989064). Methods: Eligible patients were HLA-A*02 positive with advanced head and neck squamous cell carcinoma (HNSCC), melanoma, or urothelial carcinoma (UC) expressing MAGE-A10. Patients underwent apheresis; T-cells were isolated, transduced with a lentiviral vector containing the MAGE-A10 TCR, and expanded. Patients underwent lymphodepletion with fludarabine and cyclophosphamide prior to receiving ADP-A2M10. ADP-A2M10 was administered in two dose groups receiving 0.1×109 and >1.2 to 6×109 transduced cells, respectively, and an expansion group receiving 1.2 to 15×109 transduced cells. Results: Ten patients (eight male and two female) with HNSCC (four), melanoma (three), and UC (three) were treated. Three patients were treated in each of the two dose groups, and four patients were treated in the expansion group. The most frequently reported adverse events grade ≥3 were leukopenia (10), lymphopenia (10), neutropenia (10), anemia (nine), and thrombocytopenia (five). Two patients reported cytokine release syndrome (one each with grade 1 and grade 3), with resolution. Best response included stable disease in four patients, progressive disease in five patients, and not evaluable in one patient. ADP-A2M10 cells were detectable in peripheral blood from patients in each dose group and the expansion group and in tumor tissues from patients in the higher dose group and the expansion group. Peak persistence was greater in patients from the higher dose group and the expansion group compared with the lower dose group. Conclusions: ADP-A2M10 has shown an acceptable safety profile with no evidence of toxicity related to off-target binding or alloreactivity in these malignancies. Persistence of ADP-A2M10 in the peripheral blood and trafficking of ADP-A2M10 into the tumor was demonstrated. Because MAGE-A10 expression frequently overlaps with MAGE-A4 expression in tumors and responses were observed in the MAGE-A4 trial (NCT03132922), this clinical program closed, and trials with SPEAR T-cells targeting the MAGE-A4 antigen are ongoing.

5.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086946

RESUMO

BACKGROUND: ADP-A2M10 specific peptide enhanced affinity receptor (SPEAR) T cells (ADP-A2M10) are genetically engineered autologous T cells that express a high-affinity melanoma-associated antigen A10 (MAGE-A10)-specific T-cell receptor (TCR) targeting MAGE-A10+ tumors in the context of human leukocyte antigen (HLA)-A*02. ADP-0022-003 was a phase I dose-escalation trial that aimed to evaluate the safety and antitumor activity of ADP-A2M10 in non-small cell lung cancer (NSCLC) (NCT02592577). METHODS: Eligible patients were HLA-A*02 positive with advanced NSCLC expressing MAGE-A10. Patients underwent apheresis; T cells were isolated, transduced with a lentiviral vector containing the TCR targeting MAGE-A10, and expanded. Patients underwent lymphodepletion with varying doses/schedules of fludarabine and cyclophosphamide prior to receiving ADP-A2M10. ADP-A2M10 were administered at 0.08-0.12×109 (dose group 1), 0.5-1.2×109 (dose group 2), and 1.2-15×109 (dose group 3/expansion) transduced cells. RESULTS: Eleven patients (male, n=6; female, n=5) with NSCLC (adenocarcinoma, n=8; squamous cell carcinoma, n=3) were treated. Five, three, and three patients received cells in dose group 1, dose group 2, and dose group 3/expansion, respectively. The most frequently reported grade ≥3 adverse events were lymphopenia (n=11), leukopenia (n=10), neutropenia (n=8), anemia (n=6), thrombocytopenia (n=5), and hyponatremia (n=5). Three patients presented with cytokine release syndrome (grades 1, 2, and 4, respectively). One patient received the highest dose of lymphodepletion (fludarabine 30 mg/m2 on days -5 to -2 and cyclophosphamide 1800 mg/m2 on days -5 to -4) prior to a second infusion of ADP-A2M10 and had a partial response, subsequently complicated by aplastic anemia and death. Responses included: partial response (after second infusion; one patient), stable disease (four patients), clinical or radiographic progressive disease (five patients), and not evaluable (one patient). ADP-A2M10 were detectable in peripheral blood and in tumor tissue. Peak persistence was higher in patients who received higher doses of ADP-A2M10. CONCLUSIONS: ADP-A2M10 demonstrated an acceptable safety profile and no evidence of toxicity related to off-target binding or alloreactivity. There was persistence of ADP-A2M10 in peripheral blood as well as ADP-A2M10 trafficking into the tumor. Given the discovery that MAGE-A10 and MAGE-A4 expression frequently overlap, this clinical program closed as trials with SPEAR T cells targeting MAGE-A4 are ongoing.


Assuntos
Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia Adotiva , Neoplasias Pulmonares/terapia , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Idoso , Feminino , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Depleção Linfocítica , Masculino , Pessoa de Meia-Idade
6.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233963

RESUMO

With durable cancer responses, genetically modified cell therapies are being implemented in various cancers. However, these immune effector cell therapies can cause toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Pseudogout arthritis is an inflammatory arthritis induced by deposition of calcium pyrophosphate dihydrate crystals. Here, we report a case of pseudogout arthritis in a patient treated with MAGE-A4 directed T cell receptor T cells, for fallopian tube cancer. The patient developed CRS and ICANS 7 days after infusion of the T cells. Concurrently, the patient newly developed sudden onset of left knee arthritis. Synovial fluid analyses revealed the presence of calcium pyrophosphate dihydrate crystal. Notably, the pseudogout arthritis was resolved with tocilizumab, which was administered for the treatment of CRS and ICANS. Immunoprofiling of the synovial fluid showed that the proportion of inflammatory interleukin 17 (IL-17)-producing CD4+ T (Th17) cells and amount of IL-6 were notably increased, suggesting a potential role of Th17 cells in pseudogout arthritis after T-cell therapy. To the best of our knowledge, this is the first reported case of pseudogout arthritis after cell therapy. Clinicians, especially hematologists, oncologists and rheumatologists, should be aware that pseudogout arthritis can be associated with CRS/ICANS.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos de Neoplasias/efeitos adversos , Condrocalcinose/etiologia , Proteínas de Neoplasias/efeitos adversos , Receptores de Antígenos de Linfócitos T/uso terapêutico , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Condrocalcinose/fisiopatologia , Feminino , Humanos
7.
Blood Adv ; 3(13): 2022-2034, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289029

RESUMO

This study in patients with relapsed, refractory, or high-risk multiple myeloma (MM) evaluated the safety and activity of autologous T cells engineered to express an affinity-enhanced T-cell receptor (TCR) that recognizes a peptide shared by cancer antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and L-antigen family member 1 (LAGE-1) and presented by HLA-A*02:01. T cells collected from 25 HLA-A*02:01-positive patients with MM expressing NY-ESO-1 and/or LAGE-1 were activated, transduced with self-inactivating lentiviral vector encoding the NY-ESO-1c259TCR, and expanded in culture. After myeloablation and autologous stem cell transplant (ASCT), all 25 patients received an infusion of up to 1 × 1010 NY-ESO-1 specific peptide enhanced affinity receptor (SPEAR) T cells. Objective response rate (International Myeloma Working Group consensus criteria) was 80% at day 42 (95% confidence interval [CI], 0.59-0.93), 76% at day 100 (95% CI, 0.55-0.91), and 44% at 1 year (95% CI, 0.24-0.65). At year 1, 13/25 patients were disease progression-free (52%); 11 were responders (1 stringent complete response, 1 complete response, 8 very good partial response, 1 partial response). Three patients remained disease progression-free at 38.6, 59.2, and 60.6 months post-NY-ESO-1 SPEAR T-cell infusion. Median progression-free survival was 13.5 months (range, 3.2-60.6 months); median overall survival was 35.1 months (range, 6.4-66.7 months). Infusions were well tolerated; cytokine release syndrome was not reported. No fatal serious adverse events occurred during study conduct. NY-ESO-1 SPEAR T cells expanded in vivo, trafficked to bone marrow, demonstrated persistence, and exhibited tumor antigen-directed functionality. In this MM patient population, NY-ESO-1 SPEAR T-cell therapy in the context of ASCT was associated with antitumor activity. This trial was registered at www.clinicaltrials.gov as #NCT01352286.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva , Proteínas de Membrana/imunologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Citocinas/metabolismo , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Masculino , Proteínas de Membrana/antagonistas & inibidores , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transplante Autólogo , Resultado do Tratamento , Adulto Jovem
8.
Hepatology ; 69(5): 2061-2075, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30561769

RESUMO

Patients with hepatocellular carcinoma (HCC) have a poor prognosis and limited therapeutic options. Alpha-fetoprotein (AFP) is often expressed at high levels in HCC and is an established clinical biomarker of the disease. Expression of AFP in nonmalignant liver can occur, particularly in a subset of progenitor cells and during chronic inflammation, at levels typically lower than in HCC. This cancer-specific overexpression indicates that AFP may be a promising target for immunotherapy. We verified expression of AFP in normal and diseased tissue and generated an affinity-optimized T-cell receptor (TCR) with specificity to AFP/HLA-A*02+ tumors. Expression of AFP was investigated using database searches, by qPCR, and by immunohistochemistry (IHC) analysis of a panel of human tissue samples, including normal, diseased, and malignant liver. Using in vitro mutagenesis and screening, we generated a TCR that recognizes the HLA-A*02-restricted AFP158-166 peptide, FMNKFIYEI, with an optimum balance of potency and specificity. These properties were confirmed by an extension of the alanine scan (X-scan) and testing TCR-transduced T cells against normal and tumor cells covering a variety of tissues, cell types, and human leukocyte antigen (HLA) alleles. Conclusion: We have used a combination of physicochemical, in silico, and cell biology methods for optimizing a TCR for improved affinity and function, with properties that are expected to allow TCR-transduced T cells to differentiate between antigen levels on nonmalignant and cancer cells. T cells transduced with this TCR constitute the basis for a trial of HCC adoptive T-cell immunotherapy.


Assuntos
Carcinoma Hepatocelular/imunologia , Antígeno HLA-A2/metabolismo , Neoplasias Hepáticas/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Células Hep G2 , Humanos , Imunoterapia/métodos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T/imunologia
9.
Gene Ther ; 25(3): 176-191, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29789639

RESUMO

Adoptive T-cell therapy, incorporating engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs), target tumor antigens with high affinity and specificity. To increase the potency of adoptively transferred T cells, patients are conditioned with lymphodepleting chemotherapy regimens prior to adoptive T-cell transfer (ACT), and data suggest that fludarabine is an important component of an effective regimen. In a recent clinical trial using CAR-T cells engineered to target the CD19 B-cell antigen to treat acute lymphoblastic leukemia, JCAR-015 (NCT02535364), two patient deaths due to cerebral edema led to trial suspension. The lymphodepleting agent fludarabine was suggested as the causative agent, in part due to its known association with neurotoxicity and its ability to induce greater potency. In a similar CAR-T study also incorporating fludarabine in the preconditioning regimen, ZUMA-1 (NCT02348216), one patient died of cerebral edema. However, subsequent deaths in the JCAR-015 study after removal of fludarabine and improved understanding behind the mechanisms of CAR-T-related encephalopathy syndrome (CRES) indicate that fludarabine is not the primary causative agent of cerebral edema and that it can be safely incorporated into the preconditioning regimen for ACT. Since entering clinical use in the late 1980s as a chemotherapy agent, fludarabine and similar analogs have been associated with lethal neurological toxicity, yet the manifestation and timing of symptoms are distinct to those observed recently in ACT. Herein, we review the history of fludarabine development as a chemotherapeutic agent, and discuss the safety of its continued use in preconditioning regimens for ACT.


Assuntos
Receptores de Antígenos de Linfócitos T/uso terapêutico , Vidarabina/análogos & derivados , Antígenos CD19/imunologia , Humanos , Imunoterapia Adotiva/métodos , Síndromes Neurotóxicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Vidarabina/efeitos adversos , Vidarabina/farmacologia , Vidarabina/uso terapêutico
10.
Eur J Cancer ; 51(10): 1293-302, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25899987

RESUMO

Drug-induced liver chemistry abnormalities, primarily transaminase elevations, are commonly observed in pazopanib-treated patients. This meta-analysis characterises liver chemistry abnormalities associated with pazopanib. Data of pazopanib-treated patients from nine prospective trials were integrated (N=2080). Laboratory datasets were used to characterise the incidence, timing, recovery and patterns of liver events, and subsequent rechallenge with pazopanib. Severe cases of liver chemistry abnormalities were clinically reviewed. Multivariate analyses identified predisposing factors. Twenty percent of patients developed elevated alanine aminotransferase (ALT) >3×ULN. Incidence of peak ALT >3-5×ULN, >5-8×ULN, >8-20×ULN and >20×ULN was 8%, 5%, 5% and 1%, respectively. Median time to onset for all events was 42days; 91% of events were observed within 18weeks. Recovery rates based on peak ALT >3-5×ULN, >5-8×ULN, >8-20×ULN and >20×ULN were 91%, 90%, 90% and 64%, respectively. Median time from onset to recovery was 30days, but longer in patients without dose interruption. Based on clinical review, no deaths were associated with drug-induced liver injury. Overall, 38% of rechallenged patients had ALT elevation recurrence, with 9-day median time to recurrence. Multivariate analysis showed that older age was associated with development of ALT >8×ULN. There was no correlation between hypertension and transaminitis. Our data support the current guidelines on regular liver chemistry tests after initiation of pazopanib, especially during the first 9 or 10weeks, and also demonstrate the safety of rechallenge with pazopanib.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias/tratamento farmacológico , Pirimidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Indazóis , Fígado/enzimologia , Masculino , Pessoa de Meia-Idade , Pirimidinas/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulfonamidas/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...